Honeycomb Morphologies
Date: 2004
Location: London, UK
Description: This research was pursued as part of a MA dissertation in Emergent Technologies and Design at the Architectural Association. The central aim of the research is the development of a material system with a high degree of integration between its design and performance. This integration is inherent to natural material systems for they have been developed through evolutionary means which intricately tie together the form, growth, and behavior of the organism. In industrial material systems, the level of integration is far lower resulting in wide and potentially problematic gaps between its means of production, its geometric and material definition, and its environmental performance. This research explores integration strategies for a particular industrially produced material system for use in architectural applications.
This research develops a honeycomb system that is able to adapt to diverse performance requirements through the modulation of the system’s inherent geometric and material parameters while remaining within the limits of available production technologies. The Honeycomb Morphologies Project is based on the desire to form an integrated and generative design strategy using a biomimetic approach to architectural design and fabrication.
The system developed in this research presents an open framework through which the designer can work, enabling a more integral relationship between the various conflicting and overlapping issues in the development of an architectural project. The research represents a tool, waiting to be actively used with specific project data and embedded in a built artifact.
The Manifold installation was a large scale prototype constructed for the AA 2004 Projects Review. The installation explored the research developed in the Honeycomb Morphologies Project and extended it to a more architectural scale.
Credits: Andrew Kudless with help from Jayendra Sha, Nikolaos Stathopoulos, Giorgos Kailis, Matthew Johnson, Ranidia Lemon, Muchuan Xu, Grace Li, Scott Cahill, and Wongpat Suetrong.